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Section 1

INTRODUCTION

Three-dimensional flow effects play an important role in the perfor-

mance of axial-flow fans and compressors that operate at transonic speeds.

The coupling between transonic and three-dimensional effects limits the ap-

plicability of the two-dimensional analysis methods that have been in use for

some years. Efforts to extend these analyses to three-dimensional transonic

cases have been aided greatly by the development of computational methods

for solving comparable problems in external aerodynamics. The applicable

external-flow methods can be divided broadly into two fields: those based

on the potential-flow approximation and ti;ise that start from the Euler equa-

tions. The potential-flow category is further divided into the range of

small disturbances and the range where the full nonli'nearity of the problem

must be accounted for.

The nonlinear small-disturbance potential theory was developed, in a
1-S

previous AFOSR-sponsored study at Calspan. That work consisted essentially

1. Rae, W.J., "Nonlinear Small-Disturbance Equations for Three-Dimensional
Transonic Flow Through a Compressor Blade Row", AFOSR-TR-76-1082,
AD-A 31234 (August 1976).

2. Rae, W.J., "Relaxation Solutions for Three-Dimensional Transonic Flow
Through a Compressor Blade Row, in the Nonlinear Small-Disturbance
Approximation", AFOSR-TR-76-1081, AD-A032553 (August 1976).

3. Rae, W.J., "Finite-Difference Calculations of Three-Dimensional Transonic
Flow Through a Compressor Blade Row, Using the Small-Disturbance Non-
linear Potential Equation", pp. 228-252 of Transonic Flow Problems in
Turbomachinery, ed. by T.C. Adamson and M.F. Platzer, Hemisphere
Publishing Corporation, Washington, (1977).

4. Rae, W.J., "Calculations of Three-Dimensional Transonic Compressor Flow-
fields by a Relaxation Method", Journal of Energy, 1 (1977) 284-296.

5. Rae, W.J., "Computer Program for Relaxation Solutions of the NonlineaT
Small-Disturbance Equations for Transonic Flow in an Axial Compressor
Blade Row", AFOSR-TR-78-0855, AD-A053744 (April 1978).
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of an application of the line-relaxation methods and !.ach-number-dependent

differencing procedures pioneered by Murman and Cole. 6 Flow field calculations

were done, with the resulting computer code, for several blade rows and

operating conditions. These calculations showed interesting interactions be-

tween the regions of subsonic and supersonic flow that develop within the

blade row.

The principal limitation of these results is, of course, the small-

disturbance assumption. The pressure ratios and turning angles of practical

compressors exceed the range that can properly be called a small perturbation

of the inlet conditions. Thus the role of the previous work is chiefly to

give qualitative information about the flow.

The present research was undertaken with the aim of extending this

earlier work, so as to handle more fully the nonlinearity of the problem.

As noted above, the two principal candidates for achieving this goal were the

methods for solving the full nonlinear potential equation, and the time-marching

methods used for solving the Euler eauations. The former approach has the

advantage that only a single dependent variable needs to be stored, compared

with five dependent variables in the latter case. However, the potential-flow

approximation is restricted to isentropic flow. An additional consideration,

of considerable importance at the start of this research, was that methods

for treating the three-dimensional full potential equation were not yet de-

veloped. In contrast, a number of papers describing the "fully implicit" time

marching procedure had been published, and appeared to be capable of yielding
7-9

results in a relatively straightforward way.

6. Murman, E.1., and Cole, J.D., "Calculation of Plane Steady Transonic
Flows", AIAA Journal 9 (1971) 114-121.

7. Beam, R.M. and Warming, R.F., "An Implicit Finite-Difference Algorithm
for Hyperbolic Systems in Conservation-Law Form", J. Comp. Phys. 22
(1976) 87-110.

S. Steger, J.L., "Implicit Finite Difference Simulation of Flow About Arbi-
trary Geometrics with Application to Airfoils", AIAA Paper 77-665
(June 1977).

9. Kutler, P., Chakravarthy, S.R., and Lombard, C.P., "Supersonic Flow Over
Ablated Nose Tips Using an Unsteady Implicit Numerical Procedure",
AIAA Paper 78-213 (January 1978).
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Accordingly, the time-marching method was selected for application

to the case of flow through an isolated compressor blade row. The adaptations

required include a coordinate transformation suitable for a cascade geometry,

modifications to enforce mass-flow conservation, boundary conditions upstream

and downstream of the blade row, and a means of accounting for the vortex

sheets which trail downstream of the blades.

The section below contains a review of the basic equations in absolute

and relative coordinates, including two versions of the energy equation. Also

described in this section are means for including the radius terms that appear

in cylindrical coordinates, and some details about the coordinate transforma-

tion used and the metrics that result. The third section is a review of

the finite-difference method, patterned after the Beam-Warming technique,

while the fourth section contains a description of the boundary, wake, Kutta,

and exit conditions.

All of these elements were incorporated into a computer code, and

a number of attempts were made to carry out a sample calculation. These ef-

forts were not successful, due principally to the destabilizing effects of

singularities in the metric coefficients at the blade trailing edge, and at

the points corresponding to upstream and downstream infinity. Problems arising

from the points at infinity were overcome successfully, but no satisfactory

resolution of the trailing-edge problem was found.

The section on Concluding Remarks presents some suggestions for

further modifications that may be capable of treating the trailing-edge region

successfully, and a review of other computer-program elements that will need

further development, once the metric-induced instabilities are removed.
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Section 2

BASIC EQUATIONS

Conservation-Law Forms

The Euler equations for unsteady three-dimensional flow in cylindri-

cal coordinates x , , 0 may be written in conservation form as (see, for

example, Reference 10)

-.- (rp 4 -(rpv,) +, ) , 0v) + v

a ar+ )(r - r ) + -9 =

(rPvX)  + __ E o + r (rpV

(rpV,) + (rpV. V) + + (r[p V 2 ]) + - V( ) = 2

at az ar
rpve')~~ ~~ + ) r -

at V aS po CpVJ) = VprV

•+ (r ce+ ) + + 0

where V is the absolute velocity, p and P are the pressure and density, and e
is the total energy per unit volume:

e T + - V2.

1n. Vinokur, '.I., "Conservation Equations of Gasdynamics in Curvilinear Co-
ordinate Systems", Journal of Computational Physics, 14 (1974)
pp. 105-125.
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These equations are written in the absolute coordinates. They may be

cast in terms of blade-fixed coordinates by the transformation

X = VZ , W =r V -I (2-3)

where \ is the velocity relative to the blades. After dropping the primes,

these equations have the form:

((Pr) a a
-- + (r ) + (() -r)-0

a- x r ( * (r rp7 ) +at dX ~ zc. oJ T-L ( 0C)xP~

a. a) (rL,,J )  
2 }7 + -2-4k

at arLP + rJ a 9+/ V

(rz a a ap )4at x ~ )+~~rP,+ 01p ) = (rp) (2-4)

where I is the rothalnv:

2
+C7 + 2 (2-3

There are two features of these equations that make it difficult to apply the

time-marching algorithms developed for external flow. The first is the

i1. Wiu, C.H., "A General Theory of Three-Dimensional Flow in Subsonic and
Supersonic Turbomachines of Axial -, Radial -, and Mixed-Flow Types",
NACA TN 26nl4 (January 1952).

iS
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appearance of the time derivative on the right side of the energy equation;
in seeking a steady-state solution, it is not clear whether this term should

be set equal to zero or evaluated from previous time steps, and the external-

flow literature offers no guidance on this question. A preferable form of

the energy equation is

(rk 4-~ (rW I<+1bI)+ --L (r=k.1EK-.PJ) (We [K+p] 0

(2-6)

whre+ (a) [ -(r) 2
where K r- i -I -i-] (2-7)

A second awkward feature of these enuations is the appearance of
the variable Y , inserted in several places in order to preserve strict con-
servation-law form. These appearances require frequent numerical evaluations,

most of which can be avoided if the strict conservation form is relaxed

slightly, by associating the r- factors only with the 6- derivatives:

ap + pWZ) + 7 a _ + _

at dx L.4 a)L9

ay ('P + -L _P___)+ 'xW9 0 X

aa% r a

+a" r--L PVe (V)+ 9 (Zr e+ I
atdy PW, r) a (P P r ' rNC~ W, W')

rr

r r

a K ( w x - K + P ) ) + a ( W r ( K - ) ) + * ' ( W ( K + - 8

'2-8
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Dimensionless Forms

The Euler equations can be made dimensionless in terms of reference

values of length, L re velocity, Ur, . and density Pre , and by dividing

the continuity, momentum, and energy equations by Pref Uref ' 10ref Ur

and r , respectively. Thus each term in the above equations may

be considered as a dimensional quantity, or its dimensionless equivalent.

The time, for example may be taken in physical units, or in units of Lre4 /Ure.

These equations can be written in terms of the following five-compo-

nent vectors:

3U 9E F Cr HG -F
-- + -- -4- -- -

r 0 r (2-9)

where

P W -P 4.p W Xw Wr

U = PWr , E = P WV Vr ' r

P We W't we  P wr VW'

K W( K+ p)V +')

PV'4e 0

r /0Wr W9 pl(W9 +)r)

-P + t We -Wr (1Pwr +W,)

W e (K< + jo) o

7I



If these equations are subjected to the general coordinate

trans formation

'r t 0 '=4 ~' , t) x ~ ,r,9 ), ~ (,v ,t

(2-12)

then, by following Viviand's 1 2 derivation, it can be shown that the Euler

equations retain conservation form, i.e.,

/U\ 9 Ir[~ ~ ~ +049)~ _L lrCUqt+EqF ,,]J+G18-- +e

Sr~ 6 r

where the zero term on the right side results from adding appropriate terms

to achieve the conservation form, and whereoCis the Jacobian:

= , r (2-14)

t; r 6e

These can also be written as

12. Viviand, H., "Formes Conservatives des Equations de la Dynamique des

Gaz", La Recherche Aerospatiale (1974), No. 1, January-February,

pp. 65-66.

8
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a aE _ F_ G.

94 (2-15)

where

& U~ + E + Fr +

, = [u + E F4, +

H_-F (2-16)Hl rO

Finally, by inserting the definitions of E, F, and G, the vectors

, F , and & can be written as

Wr P W3

/0N W , W r 4- -P r IF = . r + r/r G -, 0 ,= p W 3 r . , r

p t
(K~~w, € (K,.,)k,_ ,nt/ t(W.,)k_-,ct /

(2-17)

where W, W and W are the contravariant components of the velocity vector:

9



+ V1w + w e -r

I= + Wr1 r + rbr + 19 r

'43+ 1 Le4  (2-18)

Note that in most places the factor r' appears as a divisor of the metrics of

the third column of,, for example as /r; thus only the ratio /r needs

to be stored at each grid point, rather than both factors.

10



Section 3

FINITE-DIFFERENCE METHOD

.7

The algorithm presented by Beam and Warming' is applied as follows:

(here, the superscript ii denotes the time level of the solution):

A, at U 3a\ ,'U
U ~ Li 4 - - -i + 0 (41t)2 L t/ti

At - + -) + -- +±§. )t+1

+31)U t F SEA d11a&

Af-~- H H ]- O(at) 3(3-1)

Next, a Taylor-series expansion is made, i.e.:

A l + A A r7

Fn B (U -) + O(at)
+_ +,0 o+ 20o t) 2

+C" ) + O(Al)

H = 4 + D0( "-U0) i + O(At) (3-2)

where the coefficients in the expansion are the matrices:

dEA I ~d
au u dLJO

E a , Fa BU , H= C , =

This enables the equation to be written as

11



U f2 T Q
+ _

3p)(,A '_ A _L M6nj An).

n iJI ,3 (3-4)

2 2H + O +U) -- * O(at)

which can be rearranged as

S+ ( -p-+ - - DI

L 2~ '5a d

t - + -q 4

where I is the identity matrix. Certain terms are now added, of order (,s)Lt

and (A t 3 
, which have the effect of "completing the cube" on the left-hand

side, so that it can be factored as:

(I+ (1+ (I +B - - U

=, At 3,, At 2 )z -- - ")z -Dt2 2- 3

- 6t + + . -0 - (t (3-6)

Following Beam and Warming, this equation is rearranged as

12



- " " + -+  [H-

where U2U V*

The matrices A, B, C, and D (without the ( ^ ) symbol) are defined as

9E CF LC a H
O= B U au D a-

E= AU, F B3U, CU, I1 = DO (3-8)

The relations between the two sets are

+ +

B = Ir7 + P + Br + r

, Z; + tq + B 4 ,.. -
r"

, -3 (3-9)
0= r"

The matrices A, B, C, and D are given in the Appendix.

13
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Equation (3-7) is usually referred to as the "delta form" of the

algorithm. Its numerical solution is found by a sequence of three one-

dimensional solutions :

(+ + 2-
2 Ad

(j+ C)AU = AU (3-10)

Here the term D has been placed in the second step, in order to facilitate

the calculation of two-dimensional cases, which bypass the radial solution

step altogether. This term can be placed in any one of the three steps, with

no change in the truncation error.

Damping Terms

The numerical algorithm described above, which uses central dif-

ferences for the spatial derivatives, requires the addition of certain damping

terms for stability. These terms are added by rewriting Eq. 3-10 as follows:

( 6(a)2 d2 6 q)

P• 1 f ( L

L. 2 2n TA

6,__ 9 4 (A4) 4  
a4}.(3l (3-11)

+ +



I
The fourth derivatives on the right hand side are evaluated explicitly, using

central differences of data at the previous time step. At grid points next

to the boundaries, the second derivative is used.

The additional terms on the left side are treated implicitly, i.e.,

they appear as corrections to the coefficients of the block tridiagonal

matrix equations.

Step-Size Considerations

For a fully implicit method, the time step would be limited only by

considerations of accuracy, and not by stability. As will be noted below,

the present application (and all of the external - aerodynamics literature

as well) uses boundary conditions that are explicit, and involves data one

time step behind. This introduces the problem of stability considerations, and

it is usually found that the time step must be on the order of that given by

the Courant-Friedrichs-Lewy condition:

L V - (3-12)

where A denotes an eigenvalue of the matrices that appear in the nonconserva-

tive form of the Euler equations. For the present case, these differ only

slightly from the rectangular-coordinate set discussed by Warming, Beam, and
13

Hyett. The non-conservative forms of the equations are

+ O x  -_ + P6-
at -Z ar r a)

where

13. Warming, R.F., Beam, R.M. and Hyett, B.F., "Diagonalization and Simulta-
neous Symmetrization of the Gas-Dynamic Matrices", Mathematics of
Computation, 29, (1975) 1037-1045.

13



LL r oo 0 W 00

P o0 0

\Vr 0 0 0 we 0

/r/
0 0 10 ot- w r  o o a *'4

C -- - (3-1 )
0 

z
(we  r)/r C

The eigenvalues of P;, Ar , and A are ^ , 'r ,W and are related

to those of the conservation-law form by the similarity transformation

(3-15)

where is , v, or P , 9 is A , ,or C (see Eq. 3-8), and Ais the

Jacobian matrix dUI'd-:

1 C 0 0 0

L0 0

VIW, . o 0

0 a o Q o (3-16)

16



10 0 0 0

/P 0 IP 0

- (w 4- L r 2)  - 1-) - -O - -)w -

Thus

+ (3-17)
where ko -' -kz 'and k are either or qt %L 4'
whr ~ , , ' -n-' or , , ,

. ' or t ' ~ r r

Coordinate Transformations and Metrics

The geometry of the axisymmetric flow passage is used first, to

define the coordinate as the fractional distance from hub to tip:

r- r C( )

Tl H

r~x) (3-18)

Figure 1.

17



The bullet-nose contour of the hub, at some distance upstream of the blade

row, must be replaced by some sort of a smooth transition). The intersection

of the blade surfaces with the surfaces - constant defines a two-dimensional

cascade:

Figure 2.

This cascade is then mapped into a square, using the conformal transforma:•

described in Reference 14. The correspondence of points in the cascade 2-_:

mapped planes is shown in Fig. 3.

The metrics calculated in the plane rj= constant must be convert.

to the three-dimensional quantities required by the general coordinate

transformation, where , , and Z are regarded as functions of Z , r ,

e . If these metrics are calculated by differencing the coordinates

selves, the easiest way to proceed is to regard the sequence of planes ',

constant as determining C, & , and X for given values of , , and

difference formulas then can use:

-1

14. Rae, W.J., "A Computer Program for the Ives Transformation in Turlv-
machinery Cascades", Calspan Report No. 6275-A-3 (November 19n.

18
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0
0
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F"1

(x r 4- X,,;

Z; ~ r' X - ;

Z = - (3-19)

where

xr

(,x ,r7, 7) r (3-20)

is the Jacobian of the transformation.

If the metrics in the Y= constant plane are evaluated analytically

(for example by conformal mapping, as in the examples used here), then they

will contain derivatives of the quantity r6, taken at constant X and n.

In order to extract the desired metrics, the chain rule is used, giving:

r .r

and similarly for the derivatives of z;.

20



Section 4

BOUNDARY CONDITIONS

The algorithm described in the previous section is implicit, in that

the solution vector at all field points is updated by each sequence of three

one-dimensional solutions. The values of the solution vector at the grid

boundaries can be updated either as part of this implicit scheme, or explicitly.

In the former case, special finite-difference versions of the boundary con-

ditions must be developed, and incorporated into each of the one-dimensional

solution procedures. In the latter, the updating of the boundary values is

separated from the sequence of finite-difference operators used at the field

points, and lags one time step behind.

An explicit treatment at the grid boundaries is used in the current

program, in order to retain flexibility with regard to the coordinate

transformations used. If an implicit treatment of the boundary conditions

were used, the specific details of the transformation would have to be built

into the main solution algorithm.

Boundary conditions are needed for five variables: three velocity

components, and any two thermodynamic variables, for example, pressure,

density, rothalpy, total energy). The technique used in external-aerodynamic

studies (Reference 8, for example) is to use the surface tangency condition for

the three velocities, to extrapolate the density from nearby field points,

and to update the pressure using an expression for its normal derivative at

the surface.

Surface-Tangency Condition

Since the blade surfaces lie in the planes = const., the surface

tangency condition is

21



t r

The expressions for the other two contravariant components are then added to

this, to give:

q, ~ Ir rr 1

4-4K <-2:)rW. (-2
Numerical values for W, and W are found at the surface by extrapolation,

after which this equation is solved for the surface values of k/z, W, , and We

A similar procedure is used at the hub and tip, with W. = 0 in that case.

Normal Pressure - Derivative Relation

The pressure at the surface = constant is found by using an

expression for 3/4 to extrapolate from the value a distance A away

from the surface. Two-dimensional counterparts of this derivative expression

are given in References 8, 9, 15, with relatively few details about their

derivation. The version appropriate to the present problem is:

15. Pulliam, T.H., and Steger, J.L., "On Implicit Finite-Difference Simula-
tions of Three-Dimensional Flow", AIAA Paper 78-10, (January 1978).

22



4;e Y-+ r 4 + W19  4rX-
494*.

a r

Wr 4

+ +q rv r

(4-3)

This is to be regarded as an expression for .p/l4 on the blade surfaces

4 = constant, with all other quantities either known or found by extrapola-

tion. Its usefulness lies in the fact that it contains no time derivatives

of the dependent variables. The derivation of this equation is achieved by

summing the three components of the momentum equation, multiplied respectively

by 4 ' 
4 r and /. . The resulting equation is then arranged into four

groups, containing derivatives with respect to Vr, 4 , q and 4 respectively.

Within each of these groups, appropriate terms are added and subtracted so

as to form the quantity WV, which is zero. Expansion of certain of the ,

and ; derivatives then leads to cancellation of a number of terms involving

the product of the pressure times derivatives of the metrics. Other terms

of this tvpe, which do not cancel, can be rearranged by noting the property

of the Jacobian that

+ 3a-- (4-4)

where is X,r' or 9. After these simplifications have been made, four of

the remaining .rms can be recognized as the continuity equation; removing

these terms takes out the only remaining terms involving r- derivatives of

23



the dependent variables. Finally, it is necessary to add and subtract certain

derivatives of Yr and to use the relation

o (4-5)

A similar relation for the pressure gradient normal to the hub and

shroud can be found, by summing the momentum equations, multiplied respectively

by r, , and 19 (and then using '3 = 0). The result is

20

+( + Yl 4) + L(b

P r[" r /re (4-6)

At +1, a symmetry condition is imposed, explicitly:

Kutta Condition

The trailing-edge region is treated in the present work as though

the trailing edge were a cusp, i.e., the pressures and flow angles leaving

either side of the trailing edge are required to be the same, although the

velocity magnitudes may be unequal. For small trailing-edge included angles,

24



the application of the flow tangency condition on the blades would be expected

to produce nearly equal flow angles; thus in the present work, the pressures

were matched, by updating the quantity K at the two points denoted by + and

in Fig. 4. Thus:

S_ - 1K -  - _ ) =o (4-8)

In order to set K~and K-, define

- + (K I K-) (4-9)2 c4

where the notation ( signifies that these are values extrapolated to the

surface. Then calculate:

-K [U+ _ U,- ] (4-10)

25
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Figure 4. Trailing-Edge Notation

Conditions at Infinity

The points at infinity ( = 0, 1 = ) are excluded from the grid

by using an even number of grid points in the 4 - direction:

= (L-1) 4, L = 1,2,..., LMX; LIX even, 6 = 2/L1X-1 (4-11)

The points at = 1, L = L+ and L = L (where L- is the integer part of

(LNIX + 1)/2, and L+ = L- + 1 - see Fig. 3 - ) are assigned fixed values at

the beginning of the calculation, and are not changed thereafter. In par-

ticular, care is taken to avoid differencing across these points when applying

the symmetry condition at = 1.

The question of how to select the values that are assigned at plus

and minus infinity is a serious problem in its-1f. The literature contains a
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number of papers which use time-marching methods to solve the Euler equa-

tions. 16 - 20 In several of these, the method of characteristics is applied

to the equations (in nonconservative form) in order to calculate the solution

at the grid boundaries. In other papers, certain dependent variables such

as the pressure or outlet flow angle are prescribed, and the remaining vari-

ables deduced from these. However, there does not exist at present a complete

treatment of this "Trefftz-plane" problem, connecting the far-field solution

to conditions at the blades, and giving the relations between the dependent
21.

variables themselves. 2 A prominent example of what is missing from the

current literature.is the connection between the pressure far downstream and

the trailing-edge conditions: in the nonlinear small-disturbance theory,

the imposition of the Kutta condition at the trailing edge uniquely deter-

mines the circulation at that spanwise station, which in turn defines the

pressure rise and turning angle that must be reached far downstream of the

blade row. 1,4 The extension of this relationship to the case of the full

Euler equations has not been made. Thus, for example, it must be presumed

16. McDonald, P.W., "The Computation of Transonic Flow Through Two-Dimen-
sional Gas Turbine Cascades", American Society of Mechanical Engineers,
Paper 71-CT-89, 1971.

17. Gopalakrishnan, S. and Bozzola, R., "Computation of Shocked Flows in
Compressor Cascades", American Society of Mechanical Engineers, Paper
72-GT-31, 1972.

18. Kur:rock, J.W. and Novick, A.S., "Transonic Flow Around Rotor Blade
Elements", Transactions of the American Society of Mechanical Engineers,
Vol. 97, December 197S, pp. 598-607.

19. Thompkins, William T., Jr., "An Experimental and Computational Study
of the Flow in a Transonic Compressor Rotor", MIT Gas Turbine Laboratory
Report No. 129 (May 1976).

20. Veuillot, J.P., "Calculation of the Quasi-Three Dimensional Flow in a
Turbomachine Blade Row", Trans. ASME (A), Journal of Engineering for
Power 99, (1977) 53-62.

21. Karamcheti, K., Principles of Ideal-Fluid Aerodynamics, Wiley and Sons,
New York (1966) Section 19.4.
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that the assignment of an outlet flow angle implies a violation of the Kutta

condition, and this in turn renders the circulation and pressure rise non-

unique. It is not clear from the published literature how these problems are

resolved in current computer codes.

The present research has not addressed these questions, because of

the instabilities encountered in the process of developing the program. In-

stead, a set of boundary values, described below, was assigned at downstream

infinity. These values were adequate for use in the early development of the

computer program, but will have to be replaced by a more exact formulation,

after the grid-related oscillations have been removed.

Th& specific choices for the variables at downstream infinity were

made as follows: the static pressure ratio across the blade row was assigned

as an input, and the density was found from the isentropic relation. The

area ratio between outlet and inlet was assigned, and from this the axial

velocity component Jy was found by conserving the mass flow ,OR14,. The radial

velocity WVrwas set equal to zero, and the circumferential component LV9 was

chosen, following Reference 19, as that value which gives a uniform static

pressure, i.e., radial equilibrium requires

- = wr or w wr (4-12)3rp ar

The value of the quantity K then follows from these specifications.

Wake Conditions

Whenever a compressor blade is acted on by a lift that varies with

radius, a sheet of vorticity will be shed from the trailing edge. The origins

of this vortex sheet can be seen in the nonlinear small-disturbance results

of Reference 1; Figure 11 of that paper shows the distributions of radial

velocity at a sixty-percent chord location. These distributions retain the

same qualitative behavior all the way to the trailing edge, i.e., they reveal

a discontinuity at the trailing edge, which trails downstream as a vortex

sheet.
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In the small-disturbance potential-theory approximation, the trailing

vortex sheets are assumed to lie on the helical surfaces defined by the inlet

flow. In a full nonlinear treatment, they must be allowed to deform, away from

these surfaces, as they move downstream. This problem has been studied re-
22-24

cently in a series of papers by McCune and Hawthorne. These papers

constitute a basis on which to model the vortex-sheet trajectories in a

finite-difference code. For example, the discontinuities in radial velocity

that occur at the trailing edge would have to be inserted at the trailing-edge

location, and the locus of this discontinuity would have to be followed down-

stream. The conformal transformation used in the present work is not well

suited for doing so, however, since the path followed by the trailing vortex

sheet in the 4 , 4 plane (Figure 3) is a line that leaves the trailing-edge

image, ard spirals around the image of the point at downstream infinity. It

would be virtually impossible to use a grid that is fine enough to resolve

these discontinuities numerically. In order to facilitate the resolution of

the vortex-sheet behavior, it would be necessary to use a different coordinate

transformation, in which the path of the vortex sheet is not as convoluted

as it is in the case of the Ives mapping.

As an alternative, it might be possible to trace the magnitude and

location of these discontinuities by "floating vortex-sheet fitting", in

analogy to the procedure of floating shock fitting. The development of such

a procedure was not considered in the present research.

22. 11cCune, J.E., and Hawthorne, W.R., "The Effects of Trailing Vorticity
on the Flow Through Highly Loaded Cascades", Journal of Fluid Mechanics,
74 (1976) pp. 711-740.

23. McCune, J.E., "Three-Dimensional Inviscid Flow Through a Highly Loaded
Transonic Compressor Rotor", pp. 20-59 of Transonic Flow Problems in
Turbomachinery, ed. by T.C. Adamson and M.F. Plat:er, Hemisphere
Publishing Co., Washington (1977).

24. lfcCune, J.W., "Three-Dimensional Flow in Highly Loaded Axial Turboma-
chines", ZAMP 28 (1977) 865-878.
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Section 5

RESULTS

A two-dimensional cascade was chosen for the purpose of debugging

the program. The blade geometry, shown in Figure 5, is the same as used

by Rae and Homic: (Reference 25). It was not chosen on the basis of any

design method, but only for the purpose of facilitating a demonstration cal-

culation. The solidity is moderate, and the large leading-edge radius

minimizes strong flow field gradients in that region.

In order to do a two-dimensional case, the hub and shroud radii were

taken to be r;I/c = 99.5, - /C, = 100.5, and the calculations were done

at r/c, = 100. The inlet relative Mfach number and flow angle were taken

as n.5 and 330. All quantities were made dimensionless by dividing by the

appropriate combination of the density and axial velocity component far

upstream, 0, and U_, , and the axial projection of the chord, C,. Thus,

for example, the dimensionless angular velocity was input as

_ _r _ _-_ 1 1 (3 3°0)
U_ -_- "r U. -

5  ... (5-1)
_ 700 6 100

The specific-heat ratio was taken as 1.4, and the grid sizes in the transformed

plane as KMY= 11, LMX = 10, giving i = 0.2, L4 = 2/9.

To start the calculations, an input tape was prepared, containing

values of the metrics, the Jacobian, and the radii at each grid point. On

the first run, all dependent variables were initialized at their upstream

values. At the end of each run, the metrics, Jacobians, and radii were

25. Rae, W.J., and Homicz, G.F., "A Rectangular-Coordinate Method For Cal-
culating Nonlinear Transonic Potential Flowfields in Compressor Cascades",
AIAA Paper 78-248 (January 1978).
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Ct , '=2. M/CL =0.75, C 13.3
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rewritten on a new tape, along with values of the solution at the last tint

step. This tape could then be used to start the next series of time steps.

The maximum time step allowed by the CFL condition (see Section 3) was

calculated at the end of each step; all of the results discussed below wer,

calculated with a time step equal to half this value, and with damping coe:-

ficients CP and Es equal to the (dimensionless) value of the time step. T',ht

static pressure ratio was assigned as 1.1, and the area ratio as 1.0.

Figure 6 shows results for the velocity field after ten time sters.

In the guided channel between the blades, the results conform to what w-

be expected, but at the stations K= 2 and K = 10, there are very large o::

lations. On this coarse grid, these two stations are the outermost ones a-

which implicit calculations are done; the stations K= I and 11 form the

boundaries of the computational grid, and their values are updated explic:I'

one time step behind.

The oscillations at the station K= 2 are due to the metric sir>':-

larities at K = i; the image of the point at upstream infinity is at X =

and midway between the central pair of L - values (see Figure 3). Even

though the metrics at K = 1, L = L+ and L are finite, nevertheless their

gradients are so steep at those points that they destabilize the solutio..

This effect can be displayed clearly by the results of a calculation i...

the solution is initialized to the freestream values, and then advance"'

a single time step. For the two-dimensional case, the basic equation --.

becomes

T'- +3
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But the quantities in the square brackets on the right side of this equation

are each zero (as can be verified from Eq. 3-20, with ?r/a1 = 1). This result

is exact, analytically, but when evaluated numerically, especially on a coarse

grid, the result is nonzero, and of a magnitude consistent with the magnitude

of the oscillations that develop. Part of the problem, in the present case,

is due to the use of analytic formulas for the metrics; it is pointed out in

Reference 8 that metrics which are generated numerically, by differencing

the coordinate mapping itself, are actually less sensitive to this problem

than the analytic metrics.

In an attempt to alleviate this problem, the values of the metrics

at K = 1, L =L and L were changed, as follows: the value of

which is equal to - was chosen so as to make the factor multiply-

ing ( numerically equal to zero. Next, the value of 47 )K=, which is

equal to - , was changed so that the factor multiplying E, would

have the same value at K = 1, L=L- and L+ . The result of this modifica-

tion is shown in Figure 7, at the tenth time step. Comparison with Figure 6

shows that a considerable smoothing of the flow pattern at K = 1 was achieved.

Analogous modifications were made at K = KMX, but these did not

yield the same degree of success, presumably because the solution on this

line is also affected by the singular region near the trailing edge. Several

attempts were made to overcome this problem, by using extrapolation to update

the points near the trailing edge. These attempts were not successful. More-

over, this approach is difficult to Justify, since points on the surface

near the trailing edge are very important to the solution, in that the-" are

the ones used in applying the Kutta condition, as well as in enforcing the

surface tangency condition. Any extrapolation procedure alters the role of

these boundary points, making them dependent on the field behavior, rather

than the other way around.

The metric-singularity problems encountered in this research are

aggravated by the use of the coarse grid, and by the fact that the grid wraps

34



K= 2

FIflUP.E . SOLITTION AFTER 11 TI'IE STEPS;
'IETRICS NEAR THE POTX;TS AT INFINITY ALTERED.
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around the trailing edge of the blades. While the use of a finer grid might

alleviate the situation somewhat, it was not used, since it appeared that

lengthier calculations would not be justified until the more basic cause -

the trailing-edge singularity - was eliminated.

36



Section 6

CONCLUDING REMARKS

The experience gained in this study suggests strongly that type of

grid used (where the metrics are evaluated from analytic formulas, and the

arid is wrapped around the trailing edge) is not suitable for use with the

implicit time-marching algorithm. The evidence is not conclusive, however;

it may be that use of a finer grid and some other special treatment of the

metrics in the region of the singularities could stabilize the calculations.

However, a preferable course, for future developments, appears to be the use

of grids which are free from singularities, especially in the trailing-edge

region.

After the grid-induced instabilities have been removed, a number of

other problems will remain. These problems were not considered in depth

during this research, because of the amount of effort devoted to the insta-

bility problems. Among the topics that will have to be considered are the

Kutta and far-field conditions, the location and strength of the trailing vor-

tex sheets, and the interaction between all of these. Also remaining is the

problem of shock capturing in genuinely transonic flows, which may require

alterations in the difference formulas used. Finally, there are several ad-

vances in the time-marching algorithm that have taken place during the period
26

of this research, such as the technique of flux vector splitting. These

should be considered for incorporation in the numerical method.

26. Steger, J.L., and Warming, R.F., "Flux Vector Splitting of the Inviscid
Gasdynamic Equations with Application to Finite Difference M!ethods",
NASA TM 78605 (July 1979).
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APPENDIX

The dependent variables are defined as:

U2 uz UA/ W" ( 'o -

0 o

0 o

w,'

i-pu = + z z(3z-o u2 u= o , /,Z, i,.,.:
WI- e - U/ Ulk

w, (K. 1( ,.4,.) -z, (K,- ,).+/,0 0

0 o

Thus the matrices A, B, C, and D are

d 0j

3q

/ S cyw L ± pAG, - L,



APPENDIX (continued)

0a 0

A -3
___U/_ U ,

UU,.U

U/ , Ul 1, U,

where (ai 2

2/ 2

A zz.z-vU
S" *_ _ -- s'')6Z~

/ U /

0 0 /0 0

- ____Z- 5  140 0
U'A

UU

UU
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APPENDIX (continued)

Z'(2' 3  U2

=~~~~ 2._- ( -, ~ 2

U3 (U U 4)2

U,,

0

Z( Z4414 UqZ<

zU u U, U

U,

L 4

where



APPENDIX (continued)

-0 &/)

0 000

where

2. 2-

D3 +

3 A/-
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